z-logo
open-access-imgOpen Access
Spray mist reduction by means of a high-volume evacuation system—Results of an experimental study
Author(s) -
Martin Koch,
Christian Graetz
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0257137
Subject(s) - mist , volumetric flow rate , materials science , volume (thermodynamics) , aerosol , mouthpiece , biomedical engineering , suction , head (geology) , premolar , mathematics , nuclear medicine , mechanics , medicine , dentistry , physics , molar , meteorology , geology , quantum mechanics , geomorphology
Objectives High-speed tooth preparation requires effective cooling to avoid thermal damage, which generates spray mist, which is a mixture of an aerosol, droplets and particles of different sizes. The aim of this experimental study was to analyze the efficacy of spray mist reduction with an intraoral high-volume evacuation system (HVE) during simulated high-speed tooth preparation for suboptimal versus optimal suction positions of 16 mm sized cannulas and different flow rates of the HVE. Material and methods In a manikin head, the upper first premolar was prepared with a dental turbine, and generated particles of 5–50 microns were analyzed fifty millimeters above the mouth opening with the shadow imaging technique (frame: 6.6×5.3×1.1 mm). This setup was chosen to generate a reproducible spray mist in a vertical direction towards an imaginary operator head (worst case scenario). The flow rate (FR) of the HVE was categorized into five levels (≤120 l/min up to 330 l/min). The number of particles per second (NP; p/s) was counted, and the mass volume flow of particles per second (MVF; μg/s*cm 3 ) was calculated for 10 sec. Statistical tests were nonparametric and two-sided (p≤0.05). Results With increasing flow rate, the NP/MVF values decreased significantly (eta: 0.671/0.678; p≤0.001). Using a suboptimally positioned cannula with an FR≤160 l/min, significantly higher NP values (mean±SD) of 731.67±54.24 p/s (p≤0.019) and an MVF of 3.72±0.42 μg/s*cm 3 (p≤0.010) were measured compared to those of the optimal cannula position and FR≥300 l/min (NP/MVF: 0/0). No significant difference in NP and MVF was measurable between FR≥250 l/min and FR>300 l/min (p = 0.652, p = 0.664). Conclusion Within the limitations of the current experimental study, intraoral high-flow rate suction with ≥300 l/min with an HVE effectively reduced 5–50 μm sized particles of the spray mist induced by high-speed tooth preparation with a dental turbine.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here