z-logo
open-access-imgOpen Access
Transcranial direct current stimulation (tDCS) enhances internal source monitoring abilities in healthy participants
Author(s) -
Isabella Kusztrits,
Lynn Marquardt,
Kenneth Hugdahl,
Marco Hirnstein
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0257010
Subject(s) - transcranial direct current stimulation , psychology , neuroscience , cognitive psychology , working memory , set (abstract data type) , brain stimulation , prefrontal cortex , dorsolateral prefrontal cortex , audiology , cognition , stimulation , computer science , medicine , programming language
Source monitoring refers to the ability to identify the origin of a memory, for example, whether you remember saying something or thinking about it, and confusions of these sources have been associated with the experience of auditory verbal hallucinations (AVHs). Both AVHs and source confusions are reported to originate from dysfunctional brain activations in the prefrontal cortex (PFC) and the superior temporal gyrus (STG); specifically, it is assumed that a hypo active PFC and a hyper active STG gives rise to AVHs and source confusions. We set out to test this assumption by trying to mimic this hyper temporal /hypo frontal model in healthy individuals with transcranial direct current stimulation (tDCS): the inhibitory cathode was placed over the left PFC and the excitatory anode over the left dorsolateral STG. Participants completed a reality monitoring task (distinguishing between external and internal memory sources) and an internal source monitoring task (distinguishing between two or more internal memory sources) in two separate experiments (offline vs. online tDCS). In the offline experiment (n = 34), both source monitoring tasks were completed after tDCS stimulation, and in the online experiment (n = 27) source monitoring tasks were completed while simultaneously being stimulated with tDCS. We found that internal source monitoring abilities were significantly enhanced during active online tDCS, while reality monitoring abilities were unaffected by stimulation in both experiments. We speculate, based on combining the present findings with previous studies, that there might be different brain areas involved in reality and internal source monitoring. While internal source monitoring seems to involve speech production areas, specifically Broca’s area, as suggested in the present study, reality monitoring seems to rely more on the STG and DLPFC, as shown in other studies of the field.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here