z-logo
open-access-imgOpen Access
Controlling the surface charge of simple viruses
Author(s) -
Ana Luisa Duran-Meza,
Maria Veronica Villagrana-Escareño,
Jaime Ruiz-García,
Charles M. Knobler
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0255820
Subject(s) - brome mosaic virus , capsid , isoelectric point , biophysics , electrophoresis , infectivity , ionic strength , surface charge , lipid bilayer , virus , plant virus , chemistry , ionic bonding , viral envelope , virology , biology , rna , biochemistry , ion , gene , membrane , aqueous solution , organic chemistry , rna dependent rna polymerase , enzyme
The vast majority of plant viruses are unenveloped, i . e ., they lack a lipid bilayer that is characteristic of most animal viruses. The interactions between plant viruses, and between viruses and surfaces, properties that are essential for understanding their infectivity and to their use as bionanomaterials, are largely controlled by their surface charge, which depends on pH and ionic strength. They may also depend on the charge of their contents, i.e., of their genes or–in the instance of virus-like particles–encapsidated cargo such as nucleic acid molecules, nanoparticles or drugs. In the case of enveloped viruses, the surface charge of the capsid is equally important for controlling its interaction with the lipid bilayer that it acquires and loses upon leaving and entering host cells. We have previously investigated the charge on the unenveloped plant virus Cowpea Chlorotic Mottle Virus (CCMV) by measurements of its electrophoretic mobility. Here we examine the electrophoretic properties of a structurally and genetically closely related bromovirus, Brome Mosaic Virus (BMV), of its capsid protein, and of its empty viral shells, as functions of pH and ionic strength, and compare them with those of CCMV. From measurements of both solution and gel electrophoretic mobilities (EMs) we find that the isoelectric point (pI) of BMV (5.2) is significantly higher than that of CCMV (3.7), that virion EMs are essentially the same as those of the corresponding empty capsids, and that the same is true for the pIs of the virions and of their cleaved protein subunits. We discuss these results in terms of current theories of charged colloidal particles and relate them to biological processes and the role of surface charge in the design of new classes of drug and gene delivery systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here