
Modeling learner-controlled mental model learning processes by a second-order adaptive network model
Author(s) -
Rajesh Bhalwankar,
Jan Treur
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0255503
Subject(s) - adaptation (eye) , mental process , process (computing) , computer science , context (archaeology) , artificial intelligence , psychology , cognition , neuroscience , paleontology , biology , operating system
Learning knowledge or skills usually is considered to be based on the formation of an adequate internal mental model as a specific type of mental network. The learning process for such a mental model conceptualised as a mental network, is a form of (first-order) mental network adaptation. Such learning often integrates learning by observation and learning by instruction. For an effective learning process, an appropriate timing of these different elements is crucial. By controlling the timing of them, the mental network adaptation process becomes adaptive itself, which is called second-order mental network adaptation. In this paper, a second-order adaptive mental network model is proposed addressing this. The first-order adaptation process models the learning process of mental models and the second-order adaptation process controls the timing of the elements of this learning process. It is illustrated by a case study for the learner-controlled mental model learning in the context of driving a car. Here the learner is in control of the integration of learning by observation and learning by instruction.