Open Access
Evaluating the antidiabetic effects of R-verapamil in type 1 and type 2 diabetes mellitus mouse models
Author(s) -
Yu-Syuan Chen,
Shao-Ju Weng,
Shu-Hsien Chang,
RouYing Li,
Guang-Tzuu Shane,
Jui-Pao Hsu,
Sheng-Wen Yeh,
Ai-Ching Chang,
Meng-Ju Lee
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0255405
Subject(s) - verapamil , metformin , acarbose , txnip , medicine , endocrinology , streptozotocin , pharmacology , diabetes mellitus , insulin , oxidative stress , calcium , thioredoxin
The global incidence of diabetes mellitus (DM) is increasing. Types 1 and 2 DM are associated with declining β-cell function. Verapamil (50% S-verapamil and 50% R-verapamil) can treat DM by downregulating thioredoxin-interacting protein (TXNIP), which induces islet β-cell apoptosis. However, it may also induce cardiovascular side effects as S-verapamil is negatively inotropic. In contrast, R-verapamil only weakly induces adverse cardiac effects. In this study, we aimed to determine the antidiabetic efficacy and cardiovascular safety of R-verapamil. We examined R- and S-verapamil binding through in vitro studies. Streptozotocin-induced type 1 and db / db type 2 DM mouse models were used to assess the antidiabetic efficacy of verapamil. IL-6, blood glucose (BG), Txnip expression, and β-cells were evaluated in streptozotocin-induced diabetic mice, while body weight, BG, and serum insulin were measured in the db / db mice. In the type 1 DM study, 100 mg/kg/day R-verapamil and racemic verapamil lowered BG, downregulated Txnip expression, and reduced β-cell apoptosis. In the type 2 DM study, the optimal R-verapamil dosage was 60 mg/kg/day and it lowered BG and raised serum insulin. However, efficacy did not increase with R-verapamil dosage. R-verapamil combined with metformin/acarbose improved BG and serum insulin more effectively than metformin/acarbose alone or verapamil combined with acarbose. R-verapamil had weaker cardiovascular side effects than S-verapamil. R-verapamil was 9.0× and 3.4× less effective than S-verapamil at inhibiting atrial inotropy and ileal contractility, respectively. It was also 8.7× weaker than S-verapamil as an agonist of somatostatin receptor type 2 (SSTR2), inhibiting ileal neurogenic contraction. Hence, R-verapamil may be an optimal DM treatment as it is safe, improves glycemic control, and preserves β-cell function both as monotherapy and in combination with metformin or acarbose. R-Verapamil has potential for delaying or arresting DM progression and improving patients’ quality of life.