z-logo
open-access-imgOpen Access
Assessing the geographic specificity of pH prediction by classification and regression trees
Author(s) -
Jacob Egelberg,
Nina Pena,
Rachel Rivera,
Christina M. Andruk
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0255119
Subject(s) - random forest , cart , context (archaeology) , regression , deciduous , predictive modelling , environmental science , biogeochemical cycle , tree (set theory) , statistics , machine learning , computer science , geography , ecology , mathematics , biology , mathematical analysis , archaeology
Soil pH effects a wide range of critical biogeochemical processes that dictate plant growth and diversity. Previous literature has established the capacity of classification and regression trees (CARTs) to predict soil pH, but limitations of CARTs in this context have not been fully explored. The current study collected soil pH, climatic, and topographic data from 100 locations across New York’s Temperate Deciduous Forests (in the United States of America) to investigate the extrapolative capacity of a previously developed CART model as compared to novel CART and random forest (RF) models. Results showed that the previously developed CART underperformed in terms of predictive accuracy (RRMSE = 14.52%) when compared to a novel tree (RRMSE = 9.33%), and that a novel random forest outperformed both models (RRMSE = 8.88%), though its predictions did not differ significantly from the novel tree (p = 0.26). The most important predictors for model construction were climatic factors. These findings confirm existing reports that CART models are constrained by the spatial autocorrelation of geographic data and encourage the restricted application of relevant machine learning models to regions from which training data was collected. They also contradict previous literature implying that random forests should meaningfully boost the predictive accuracy of CARTs in the context of soil pH.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here