
Short- and long-term mortality prediction after an acute ST-elevation myocardial infarction (STEMI) in Asians: A machine learning approach
Author(s) -
Firdaus Aziz,
Sorayya Malek,
Khairul Shafiq Ibrahim,
Raja Ezman Raja Shariff,
Wan Azman Wan Ahmad,
Rosli Mohd Ali,
Kien Ting Liu,
Gunavathy Selvaraj,
Sazzli Kasim
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0254894
Subject(s) - medicine , timi , myocardial infarction , receiver operating characteristic , framingham risk score , thrombolysis , area under the curve , population , machine learning , mortality rate , cardiology , disease , computer science , environmental health
Background Conventional risk score for predicting short and long-term mortality following an ST-segment elevation myocardial infarction (STEMI) is often not population specific. Objective Apply machine learning for the prediction and identification of factors associated with short and long-term mortality in Asian STEMI patients and compare with a conventional risk score. Methods The National Cardiovascular Disease Database for Malaysia registry, of a multi-ethnic, heterogeneous Asian population was used for in-hospital (6299 patients), 30-days (3130 patients), and 1-year (2939 patients) model development. 50 variables were considered. Mortality prediction was analysed using feature selection methods with machine learning algorithms and compared to Thrombolysis in Myocardial Infarction (TIMI) score. Invasive management of varying degrees was selected as important variables that improved mortality prediction. Results Model performance using a complete and reduced variable produced an area under the receiver operating characteristic curve (AUC) from 0.73 to 0.90. The best machine learning model for in-hospital, 30 days, and 1-year outperformed TIMI risk score (AUC = 0.88, 95% CI: 0.846–0.910; vs AUC = 0.81, 95% CI:0.772–0.845, AUC = 0.90, 95% CI: 0.870–0.935; vs AUC = 0.80, 95% CI: 0.746–0.838, AUC = 0.84, 95% CI: 0.798–0.872; vs AUC = 0.76, 95% CI: 0.715–0.802, p < 0.0001 for all). TIMI score underestimates patients’ risk of mortality. 90% of non-survival patients are classified as high risk (>50%) by machine learning algorithm compared to 10–30% non-survival patients by TIMI. Common predictors identified for short- and long-term mortality were age, heart rate, Killip class, fasting blood glucose, prior primary PCI or pharmaco-invasive therapy and diuretics. The final algorithm was converted into an online tool with a database for continuous data archiving for algorithm validation. Conclusions In a multi-ethnic population, patients with STEMI were better classified using the machine learning method compared to TIMI scoring. Machine learning allows for the identification of distinct factors in individual Asian populations for better mortality prediction. Ongoing continuous testing and validation will allow for better risk stratification and potentially alter management and outcomes in the future.