z-logo
open-access-imgOpen Access
Automatic subject-specific spatiotemporal feature selection for subject-independent affective BCI
Author(s) -
Badar Almarri,
Sanguthevar Rajasekaran,
Chun-Hsi Huang
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0253383
Subject(s) - computer science , artificial intelligence , feature selection , brain–computer interface , machine learning , pattern recognition (psychology) , support vector machine , dimensionality reduction , feature vector , electroencephalography , preprocessor , psychology , psychiatry
The dimensionality of the spatially distributed channels and the temporal resolution of electroencephalogram (EEG) based brain-computer interfaces (BCI) undermine emotion recognition models. Thus, prior to modeling such data, as the final stage of the learning pipeline, adequate preprocessing, transforming, and extracting temporal (i.e., time-series signals) and spatial (i.e., electrode channels) features are essential phases to recognize underlying human emotions. Conventionally, inter-subject variations are dealt with by avoiding the sources of variation (e.g., outliers) or turning the problem into a subject-deponent. We address this issue by preserving and learning from individual particularities in response to affective stimuli. This paper investigates and proposes a subject-independent emotion recognition framework that mitigates the subject-to-subject variability in such systems. Using an unsupervised feature selection algorithm, we reduce the feature space that is extracted from time-series signals. For the spatial features, we propose a subject-specific unsupervised learning algorithm that learns from inter-channel co-activation online. We tested this framework on real EEG benchmarks, namely DEAP, MAHNOB-HCI, and DREAMER. We train and test the selection outcomes using nested cross-validation and a support vector machine (SVM). We compared our results with the state-of-the-art subject-independent algorithms. Our results show an enhanced performance by accurately classifying human affection (i.e., based on valence and arousal) by 16%–27% compared to other studies. This work not only outperforms other subject-independent studies reported in the literature but also proposes an online analysis solution to affection recognition.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here