z-logo
open-access-imgOpen Access
Detection of locomotion deficit in a post-traumatic syringomyelia rat model using automated gait analysis technique
Author(s) -
Dipak D. Pukale,
Mahmoud Farrag,
Nic D. Leipzig
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0252559
Subject(s) - syringomyelia , gait , syrinx (medicine) , gait analysis , physical medicine and rehabilitation , spinal cord injury , medicine , spinal cord , psychiatry
Syringomyelia (SM) is a spinal cord disorder in which a cyst (syrinx) filled with fluid forms in the spinal cord post-injury/disease, in patients syrinx symptoms include loss of pain and temperature sensation or locomotion deficit. Currently, there are no small animal models and connected tools to help study the functional impacts of SM. The objective of this study was to determine the detectability of subtle locomotion deficits due to syrinx formation/expansion in post-traumatic syringomyelia (PTSM) rat model using the recently reported method of Gait Analysis Instrumentation, and Technology Optimized for Rodents (GAITOR) with Automated Gait Analysis Through Hues and Areas (AGATHA) technique. First videos of the rats were collected while walking in an arena (using GAITOR) followed by extracting meaningful locomotion information from collected videos using AGATHA protocol. PTSM injured rats demonstrated detectable locomotion deficits in terms of duty factor imbalance, paw placement accuracy, step contact width, stride length, and phase dispersion parameters compared to uninjured rats due to SM. We concluded that this technique could detect mild and subtle locomotion deficits associated with PTSM injury, which also in future work could be used further to monitor locomotion responses after different treatment strategies for SM.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here