z-logo
open-access-imgOpen Access
Upregulated hsa_circRNA_100269 inhibits the growth and metastasis of gastric cancer through inactivating PI3K/Akt axis
Author(s) -
Zhongli Wang,
Chao Liu
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0250603
Subject(s) - pi3k/akt/mtor pathway , cell cycle , cell growth , cancer research , viability assay , carcinogenesis , protein kinase b , mtt assay , apoptosis , chemistry , downregulation and upregulation , cell , biology , microbiology and biotechnology , cancer , biochemistry , genetics , gene
The pathogenesis of GC involves the complex networking of multiple signaling pathways; however, the detailed mechanisms of tumorigenesis of GC remains largely unknown. Therefore, it is necessary to explore novel diagnostic/prognostic biomarkers for GC. In this study, the levels of hsa_circRNA_100269 in gastric cancer (GC) samples and cells were examined, and its effects on the biological functions of GC cells were elucidated. The levels of hsa_circRNA_100269 in specimens/cell lines were examined using RT-qPCR. Cell models with hsa_circRNA_100269 overexpression or knockdown were generated using lentiviral vectors. Cell viability was determined by MTT assay; cell migratory/invasive activity was evaluated using wound healing/Transwell assay. Cell cycle arrest and apoptosis were assessed by flow cytometry; expression of associated markers involved in cell apoptosis, EMT and the PI3K/Akt signaling were determined by RT-qPCR/immunoblotting. In vivo study was also performed using hsa_circRNA_100269 knockout mice. Our findings revealed downregulation of hsa_circRNA_100269 in GC tissues compared to non-cancerous control. Additionally, the levels of PI3K were remarkably elevated in GC tissues, where hsa_circRNA_100269 and PI3K was negatively correlated. Moreover, the expression of hsa_circRNA_100269 was associated with histology grade and occurrence of metastasis in GC patients. In addition, hsa_circRNA_100269 was downregulated in GC cells compared to normal gastric epithelial cells. Overexpressed hsa_circRNA_100269 notably inhibited the proliferation, migration, invasion and EMT of GC cells, whereas cell cycle arrest at G0/G1 phase was promoted and cell apoptosis was enhanced. Moreover, the PI3K/Akt signaling was involved in hsa_circRNA_100269-regulated GC cell proliferation, migration, invasion, EMT and apoptosis. Knockdown of hsa_circRNA_100269 also remarkably induced tumor growth in mouse model. In summary, our findings indicated that the levels of hsa_circRNA_100269 were reduced in GC. Furthermore, hsa_circRNA_100269 could suppress the development of GC by inactivating the PI3K/Akt pathway. More importantly, hsa_circRNA_100269/PI3K/Akt axis may be a novel therapeutic candidate for GC treatment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here