z-logo
open-access-imgOpen Access
A simple interpretation of undirected edges in essential graphs is wrong
Author(s) -
Erich Kummerfeld
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0249415
Subject(s) - interpretation (philosophy) , simple (philosophy) , undirected graph , directed acyclic graph , directed graph , equivalence (formal languages) , conjecture , computer science , mathematics , set (abstract data type) , combinatorics , discrete mathematics , graph , epistemology , philosophy , programming language
Artificial intelligence for causal discovery frequently uses Markov equivalence classes of directed acyclic graphs, graphically represented as essential graphs , as a way of representing uncertainty in causal directionality. There has been confusion regarding how to interpret undirected edges in essential graphs, however. In particular, experts and non-experts both have difficulty quantifying the likelihood of uncertain causal arrows being pointed in one direction or another. A simple interpretation of undirected edges treats them as having equal odds of being oriented in either direction, but I show in this paper that any agent interpreting undirected edges in this simple way can be Dutch booked. In other words, I can construct a set of bets that appears rational for the users of the simple interpretation to accept, but for which in all possible outcomes they lose money. I put forward another interpretation, prove this interpretation leads to a bet-taking strategy that is sufficient to avoid all Dutch books of this kind, and conjecture that this strategy is also necessary for avoiding such Dutch books. Finally, I demonstrate that undirected edges that are more likely to be oriented in one direction than the other are common in graphs with 4 nodes and 3 edges.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom