z-logo
open-access-imgOpen Access
Machine learning methods to predict mechanical ventilation and mortality in patients with COVID-19
Author(s) -
Limin Yu,
Alexandra Halalau,
Bhavinkumar Dalal,
Amr E. Abbas,
Felicia A. Ivascu,
Mitual Amin,
Girish B. Nair
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0249285
Subject(s) - medicine , vital signs , mortality rate , body mass index , mechanical ventilation , emergency medicine , cohort , emergency department , respiratory rate , covid-19 , disease , surgery , infectious disease (medical specialty) , heart rate , blood pressure , psychiatry
Background The Coronavirus disease 2019 (COVID-19) pandemic has affected millions of people across the globe. It is associated with a high mortality rate and has created a global crisis by straining medical resources worldwide. Objectives To develop and validate machine-learning models for prediction of mechanical ventilation (MV) for patients presenting to emergency room and for prediction of in-hospital mortality once a patient is admitted. Methods Two cohorts were used for the two different aims. 1980 COVID-19 patients were enrolled for the aim of prediction ofMV. 1036 patients’ data, including demographics, past smoking and drinking history, past medical history and vital signs at emergency room (ER), laboratory values, and treatments were collected for training and 674 patients were enrolled for validation using XGBoost algorithm. For the second aim to predict in-hospital mortality, 3491 hospitalized patients via ER were enrolled. CatBoost, a new gradient-boosting algorithm was applied for training and validation of the cohort. Results Older age, higher temperature, increased respiratory rate (RR) and a lower oxygen saturation (SpO2) from the first set of vital signs were associated with an increased risk of MV amongst the 1980 patients in the ER. The model had a high accuracy of 86.2% and a negative predictive value (NPV) of 87.8%. While, patients who required MV, had a higher RR, Body mass index (BMI) and longer length of stay in the hospital were the major features associated with in-hospital mortality. The second model had a high accuracy of 80% with NPV of 81.6%. Conclusion Machine learning models using XGBoost and catBoost algorithms can predict need for mechanical ventilation and mortality with a very high accuracy in COVID-19 patients.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here