Open Access
Comparison of analgesic activities of aconitine in different mice pain models
Author(s) -
Jianhua Deng,
Jiada Han,
Jiahao Chen,
Yanmin Zhang,
Qiuju Huang,
Ying Wang,
Xiaoxiao Qi,
Zhongqiu Liu,
Elaine LaiHan Leung,
Dawei Wang,
Feng Qian,
Linlin Lu
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0249276
Subject(s) - analgesic , aspirin , aconitine , pharmacology , nociception , chemistry , acetic acid , metabolite , anesthesia , medicine , receptor , biochemistry
Aconitine (AC) is the primary bioactive and secondary metabolite alkaloidin of Aconitum species which is accounted for more than 60% of the total diester-diterpenoid alkaloids in Aconite. To evaluate the analgesic effects of AC, 4 different pain models including hot plate assay, acetic acid writhing assay, formalin and CFA induced pain models were adopted in this study. In hot plate experiment, AC treatment at concentration of 0.3 mg/kg and 0.9 mg/kg improved the pain thresholds of mice similar to the positive drug aspirin at the concentration of 200 mg/kg (17.12% and 20.27% VS 19.21%). In acetic acid writhing experiment, AC significantly reduced the number of mice writhing events caused by acetic acid, and the inhibition rates were 68% and 76%. These results demonstrated that AC treatment revealed significant analgesic effects in both acute thermal stimulus pain model and chemically-induced visceral pain model. The biphasic nociceptive responses induced by formalin were significantly inhibited after AC treatment for 1h or 2h. The inhibition rates were 33.23% and 20.25% of AC treatment for 1h at 0.3 mg/kg and 0.9 mg/kg in phase I. In phase II, the inhibition rates of AC and aspirin were 36.08%, 32.48% and 48.82% respectively, which means AC showed similar analgesic effect to non-steroidal anti-inflammatory compounds. In the chronic CFA-induced nociception model, AC treatment also improved mice pain threshold to 131.33% at 0.3 mg/kg, which was similar to aspirin group (152.03%). Above all, our results verified that AC had obviously analgesic effects in different mice pain models.