z-logo
open-access-imgOpen Access
Transcriptome analysis of the impact of exogenous methyl jasmonate on the opening of sorghum florets
Author(s) -
Suifei Liu,
Yan Fu,
Yuan He,
Xiaochun Zeng
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0248962
Subject(s) - methyl jasmonate , transcriptome , sorghum , arabidopsis thaliana , kegg , metabolic pathway , arabidopsis , plant hormone , biology , jasmonate , gene , botany , biochemistry , gene expression , agronomy , mutant
Background Methyl Jasmonate (MeJA) could promote the opening of sorghum florets, but the molecular mechanism remains unclear. Objective We aimed to investigate the molecular mechanism of exogenous MeJA in promoting the opening of sorghum florets. Methods Hybrid sorghum Aikang-8 was selected as the test material in this study. Sorghum plants of uniform growth with approximately 20%-25% florets open were selected and treated with 0, 0.5 and 2.0 mmol/L of MeJA. Totally there were 27 samples with lodicules removed were obtained at different time points and used for the transcriptome analysis using the BGISEQ_500RS platform. Results The results showed the sorghum florets opened earlier than the control after the treatment with exogenous MeJA, and the promotive effect increased along with the increase of exogenous MeJA concentration. The number of differentially expressed genes (DEGs) in plasma cells increased with the increase of MeJA concentration, whether up- or down-regulated, after the exogenous MeJA treatment. Besides, the number of metabolic pathways was also positively correlated with the concentration of MeJA. GO and KEGG analysis suggested the DEGs were mainly enriched in starch and sucrose metabolism-related pathways (i.e., LOC8063704, LOC8083539 and LOC8056206), plant hormone signal transduction pathways (i.e., LOC8084842, LOC8072010, and LOC8057408), energy metabolic pathway (i.e., LOC8076139) and the α-linolenic acid metabolic pathway (i.e., LOC8055636, LOC8057399, LOC8063048 and LOC110430730). Functional analysis of target genes showed that two genes named LOC-1 (LOC8063704) and LOC-2 (LOC8076139) could induce the earlier flowering of Arabidopsis thaliana . Conclusion The results of this study suggest that exogenous MeJA treatments could induce the up- or down- regulation of genes related to starch and sucrose metabolism, -linolenic acid metabolism and plant hormone signal transduction pathways in the plasma cells of sorghum florets, thereby promoting the opening of sorghum florets.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here