z-logo
open-access-imgOpen Access
Cell metabolomics analyses revealed a role of altered fatty acid oxidation in neurotoxicity pattern difference between nab-paclitaxel and solvent-based paclitaxel
Author(s) -
Jhih-Wei Huang,
ChingHua Kuo,
Han-Chun Kuo,
JinYuan Shih,
Teng-Wen Tsai,
Lin-Chau Chang
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0248942
Subject(s) - paclitaxel , neurotoxicity , metabolomics , chemistry , viability assay , carnitine , pharmacology , fatty acid , cell , biochemistry , toxicity , medicine , chemotherapy , chromatography , organic chemistry
Peripheral neuropathy (PN) is a dose-limiting, painful adverse reaction associated with the use of paclitaxel. This common side effect was often partially attributed to the solvent used for solubilization of the highly hydrophobic drug substance. Therefore, the development of alternative formulations thrived, which included that of Abraxane ® containing nanoparticle albumin-bound paclitaxel ( nab -paclitaxel). However, studies demonstrated inconsistent conclusions regarding the mitigation of PN in comparison with the traditional formulation. The mass spectrometry-based cell metabolomics approach was used in the present study to explore the potentially associated mechanisms. Although no significant difference in the effects on cell viability was observed, fold changes in carnitine, several acylcarnitines and long-chain fatty acid(s) were significantly different between treatment groups in differentiated and undifferentiated SH-SY5Y cells. The most prominent difference observed was the significant increase of octanoylcarnitine in cells treated with solvent-based paclitaxel, which was found to be associated with significant decrease of medium-chain acyl-CoA dehydrogenase (MCAD). The findings suggested the potential role of altered fatty acid oxidation in the different neurotoxicity patterns observed, which may be a possible target for therapeutic interventions worth further investigation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here