z-logo
open-access-imgOpen Access
Different selection practices affect the environmental sensitivity of beef cattle
Author(s) -
Anielly de Paula Freitas,
Mário Luiz Santana Júnior,
Flávio S. Schenkel,
Maria Eugênia Zerlotti Mercadante,
Joslaine Noely dos Santos Gonçalves Cyrillo,
Cláudia Cristina Paro de Paz
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0248186
Subject(s) - heritability , beef cattle , zoology , selection (genetic algorithm) , biology , ice calving , genetic correlation , maternal effect , sire , statistics , genetic variation , microbiology and biotechnology , genetics , mathematics , pregnancy , lactation , artificial intelligence , computer science , gene , offspring
The objective of the present study was to evaluate the effects of different selection practices on the environmental sensitivity of reproductive and growth traits in males and females of three Nellore selection lines [control (NeC), selection (NeS), and traditional (NeT) lines]. Moreover, genetic trends for the intercept and slope were estimated for each line, and the possible reranking of sires was examined. A total of 8,757 records of selection weight (SW), 3,331 records of scrotal circumference (SC), and 2,311 records of days to first calving (DFC) from Nellore cattle born between 1981 and 2017 were analyzed. (Co)variance components and genetic parameters of all traits were estimated using a reaction norm model with Gibbs sampler. In all cattle lines, the mean heritability of the studied traits ranged from 0.39 to 0.75 for SW in both males and females, from 0.46 to 0.68 for SC, and from 0.06 to 0.57 for DFC along with the environmental descriptor. In all cattle lines, the genetic correlation coefficients between the intercept and slope ranged from 0.03 to 0.81 for SW, from -0.14 to 0.39 for SC, and from -0.87 to -0.42 for DFC. Genetic trends for the slope and proportion of plastic genotypes indicated that the NeS line was more responsive to environmental changes, whereas the NeC and NeT lines tended to respond more modestly. Reranking of sires was observed for all traits, specifically in the NeC and NeT lines, because of the weak correlation between the opposite extreme environments. In the NeS line, reranking of sires was observed for DFC alone. Our results indicate that the effects of genotype-environment interaction are important and should be considered in genetic evaluations of Nellore cattle. Moreover, different selection practices affected the environmental sensitivity of the Nellore selection lines tested in this study.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here