z-logo
open-access-imgOpen Access
3D-Fast Gray Matter Acquisition with Phase Sensitive Inversion Recovery Magnetic Resonance Imaging at 3 Tesla: Application for detection of spinal cord lesions in patients with multiple sclerosis
Author(s) -
Adrien Goujon,
Sonia Mirafzal,
Kévin Zuber,
Romain Deschamps,
Jean-Claude Sadik,
Olivier Gout,
Julien Savatovsky,
Augustin Lecler
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0247813
Subject(s) - medicine , lesion , multiple sclerosis , spinal cord , magnetic resonance imaging , nuclear medicine , confidence interval , cord , radiology , pathology , surgery , psychiatry
Background and purpose To compare 3D-Fast Gray Matter Acquisition with Phase Sensitive Inversion Recovery (3D-FGAPSIR) with conventional 3D-Short-Tau Inversion Recovery (3D-STIR) and sagittal T1-and T2-weighted MRI dataset at 3 Tesla when detecting MS spinal cord lesions. Material and methods This prospective single-center study was approved by an institutional review board and enrolled participants from December 2016 to August 2018. Two neuroradiologists blinded to all data, individually analyzed the 3D-FGAPSIR and the conventional datasets separately and in random order. Discrepancies were resolved by consensus by a third neuroradiologist. The primary judgment criterion was the number of MS spinal cord lesions. Secondary judgment criteria included lesion enhancement, lesion delineation, reader-reported confidence and lesion-to-cord-contrast-ratio. A Wilcoxon’s test was used to compare the two datasets. Results 51 participants were included. 3D-FGAPSIR detected significantly more lesions than the conventional dataset (344 versus 171 respectively, p<0.001). Two participants had no detected lesion on the conventional dataset, whereas 3D-FGAPSIR detected at least one lesion. 3/51 participants had a single enhancing lesion detected by both datasets. Lesion delineation and reader-reported confidence were significantly higher with 3D-FGAPSIR: 4.5 (IQR 1) versus 2 (IQR 0.5), p<0.0001 and 4.5 (IQR 1) versus 2.5 (IQR 0.5), p<0.0001. Lesion-to-cord-contrast-ratio was significantly higher using 3D-FGAPSIR as opposed to 3D-STIR and T2: 1.4 (IQR 0,3) versus 0.4 (IQR 0,1) and 0.3 (IQR 0,1)(p = 0.04). Correlations with clinical data and inter- and intra-observer agreements were higher with 3D-FGAPSIR. Conclusion 3D-FGAPSIR improved overall MS spinal cord lesion detection as compared to conventional set and detected all enhancing lesions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here