
3D-Fast Gray Matter Acquisition with Phase Sensitive Inversion Recovery Magnetic Resonance Imaging at 3 Tesla: Application for detection of spinal cord lesions in patients with multiple sclerosis
Author(s) -
Adrien Goujon,
Sonia Mirafzal,
Kévin Zuber,
Romain Deschamps,
Jean-Claude Sadik,
Olivier Gout,
Julien Savatovsky,
Augustin Lecler
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0247813
Subject(s) - medicine , lesion , multiple sclerosis , spinal cord , magnetic resonance imaging , nuclear medicine , confidence interval , cord , radiology , pathology , surgery , psychiatry
Background and purpose To compare 3D-Fast Gray Matter Acquisition with Phase Sensitive Inversion Recovery (3D-FGAPSIR) with conventional 3D-Short-Tau Inversion Recovery (3D-STIR) and sagittal T1-and T2-weighted MRI dataset at 3 Tesla when detecting MS spinal cord lesions. Material and methods This prospective single-center study was approved by an institutional review board and enrolled participants from December 2016 to August 2018. Two neuroradiologists blinded to all data, individually analyzed the 3D-FGAPSIR and the conventional datasets separately and in random order. Discrepancies were resolved by consensus by a third neuroradiologist. The primary judgment criterion was the number of MS spinal cord lesions. Secondary judgment criteria included lesion enhancement, lesion delineation, reader-reported confidence and lesion-to-cord-contrast-ratio. A Wilcoxon’s test was used to compare the two datasets. Results 51 participants were included. 3D-FGAPSIR detected significantly more lesions than the conventional dataset (344 versus 171 respectively, p<0.001). Two participants had no detected lesion on the conventional dataset, whereas 3D-FGAPSIR detected at least one lesion. 3/51 participants had a single enhancing lesion detected by both datasets. Lesion delineation and reader-reported confidence were significantly higher with 3D-FGAPSIR: 4.5 (IQR 1) versus 2 (IQR 0.5), p<0.0001 and 4.5 (IQR 1) versus 2.5 (IQR 0.5), p<0.0001. Lesion-to-cord-contrast-ratio was significantly higher using 3D-FGAPSIR as opposed to 3D-STIR and T2: 1.4 (IQR 0,3) versus 0.4 (IQR 0,1) and 0.3 (IQR 0,1)(p = 0.04). Correlations with clinical data and inter- and intra-observer agreements were higher with 3D-FGAPSIR. Conclusion 3D-FGAPSIR improved overall MS spinal cord lesion detection as compared to conventional set and detected all enhancing lesions.