z-logo
open-access-imgOpen Access
The combination of MMSE with VSRAD and eZIS has greater accuracy for discriminating mild cognitive impairment from early Alzheimer’s disease than MMSE alone
Author(s) -
Keita Tokumitsu,
Norio YasuiFurukori,
Junko Takeuchi,
Koji Yachimori,
Norio Sugawara,
Yoshio Terayama,
Nobuyuki Tanaka,
Tatsunori Naraoka,
Kazutaka Saito
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0247427
Subject(s) - dementia , receiver operating characteristic , logistic regression , medicine , cognitive impairment , mini–mental state examination , voxel , disease , alzheimer's disease , univariate analysis , area under the curve , clinical dementia rating , multivariate analysis , radiology
Background Alzheimer’s disease (AD) is assessed by carefully examining a patient’s cognitive impairment. However, previous studies reported inadequate diagnostic accuracy for dementia in primary care settings. Many hospitals use the automated quantitative evaluation method known as the Voxel-based Specific Regional Analysis System for Alzheimer’s Disease (VSRAD), wherein brain MRI data are used to evaluate brain morphological abnormalities associated with AD. Similarly, an automated quantitative evaluation application called the easy Z-score imaging system (eZIS), which uses brain SPECT data to detect regional cerebral blood flow decreases associated with AD, is widely used. These applications have several indicators, each of which is known to correlate with the degree of AD. However, it is not completely known whether these indicators work better when used in combination in real-world clinical practice. Methods We included 112 participants with mild cognitive impairment (MCI) and 128 participants with early AD in this study. All participants underwent MRI, SPECT, and the Mini-Mental State Examination (MMSE). Demographic and clinical characteristics were assessed by univariate analysis, and logistic regression analysis with a combination of MMSE, VSRAD and eZIS indicators was performed to verify whether the diagnostic accuracy in discriminating between MCI and early AD was improved. Results The area under the receiver operating characteristic curve (AUC) for the MMSE score alone was 0.835. The AUC was significantly improved to 0.870 by combining the MMSE score with two quantitative indicators from the VSRAD and eZIS that assessed the extent of brain abnormalities. Conclusion Compared with the MMSE score alone, the combination of the MMSE score with the VSRAD and eZIS indicators significantly improves the accuracy of discrimination between patients with MCI and early AD. Implementing VSRAD and eZIS does not require professional clinical experience in the treatment of dementia. Therefore, the accuracy of dementia diagnosis by physicians may easily be improved in real-world primary care settings.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here