
Construction project risk prediction model based on EW-FAHP and one dimensional convolution neural network
Author(s) -
Yawen Zhong,
Hailing Li,
Leilei Chen
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0246539
Subject(s) - artificial neural network , risk assessment , computer science , convolution (computer science) , risk management , data mining , reliability engineering , artificial intelligence , engineering , computer security , management , economics
In order to solve the problem of low accuracy of traditional construction project risk prediction, a project risk prediction model based on EW-FAHP and 1D-CNN(One Dimensional Convolution Neural Network) is proposed. Firstly, the risk evaluation index value of construction project is selected by literature analysis method, and the comprehensive weight of risk index is obtained by combining entropy weight method (EW) and fuzzy analytic hierarchy process (FAHP). The risk weight is input into the 1D-CNN model for training and learning, and the prediction values of construction period risk and cost risk are output to realize the risk prediction. The experimental results show that the average absolute error of the construction period risk and cost risk of the risk prediction model proposed in this paper is below 0.1%, which can meet the risk prediction of construction projects with high accuracy.