The anti-arthritis effect of sulforaphane, an activator of Nrf2, is associated with inhibition of both B cell differentiation and the production of inflammatory cytokines
Author(s) -
SuJin Moon,
JooYeon Jhun,
Jaeyoon Ryu,
Ji Ye Kwon,
Se Young Kim,
KyoungAh Jung,
MiLa Cho,
JunKi Min
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0245986
Subject(s) - sulforaphane , arthritis , tumor necrosis factor alpha , inflammation , immunology , germinal center , medicine , chemistry , cancer research , b cell , antibody
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is an important transcription factor that plays a pivotal role in cellular defense against oxidative injury. Nrf2 signaling is involved in attenuating autoimmune disorders such as rheumatoid arthritis (RA). B cells play several roles in the pathogenesis of RA, such as in autoantibody production, antigen presentation, and T-cell activation. We investigated the anti-arthritic mechanisms of sulforaphane, an activator of Nrf2, in terms of its effect on B cells. To investigate the effect of sulforaphane on collagen-induced arthritis (CIA), sulforaphane was administered intraperitoneally after CIA induction. Hematoxylin and eosin-stained sections were scored for inflammation, pannus invasion, and bone and cartilage damage. We assessed the expression levels of inflammation-related factors by real-time PCR and the levels of various IgG subclasses by enzyme-linked immunosorbent assay. Sulforaphane treatment reduced the arthritis score and the severity of histologic inflammation in CIA mice. The joints from sulforaphane-treated CIA mice showed decreased expression of interleukin (IL)-6, IL-17, tumor necrosis factor (TNF)-α, receptor activator of NF-κB ligand, and tartrate-resistant acid phosphatase. Sulforaphane-treated mice showed lower circulating levels of type-II-collagen-specific IgG, IgG1, and IgG2a. In vitro , sulforaphane treatment significantly reduced the differentiation of lipopolysaccharide-stimulated murine splenocytes into plasma B cells and germinal-center B cells. Finally, sulforaphane significantly inhibited the production of IL-6, TNF-α, and IL-17 by human peripheral blood mononuclear cells stimulated with an anti-CD3 monoclonal antibody in a dose-dependent manner. Inhibition of differentiation into plasma B and Germinal Center B cells may be the mechanism underlying the anti-arthritic effect of sulforaphane.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom