z-logo
open-access-imgOpen Access
OCLSTM: Optimized convolutional and long short-term memory neural network model for protein secondary structure prediction
Author(s) -
Yawu Zhao,
Yihui Liu
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0245982
Subject(s) - convolutional neural network , protein structure prediction , computer science , protein secondary structure , artificial neural network , artificial intelligence , term (time) , pattern recognition (psychology) , network structure , protein structure , recurrent neural network , machine learning , biology , biochemistry , physics , quantum mechanics
Protein secondary structure prediction is extremely important for determining the spatial structure and function of proteins. In this paper, we apply an optimized convolutional neural network and long short-term memory neural network models to protein secondary structure prediction, which is called OCLSTM. We use an optimized convolutional neural network to extract local features between amino acid residues. Then use the bidirectional long short-term memory neural network to extract the remote interactions between the internal residues of the protein sequence to predict the protein structure. Experiments are performed on CASP10, CASP11, CASP12, CB513, and 25PDB datasets, and the good performance of 84.68%, 82.36%, 82.91%, 84.21% and 85.08% is achieved respectively. Experimental results show that the model can achieve better results.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom