z-logo
open-access-imgOpen Access
Analyzing changes in respiratory rate to predict the risk of COVID-19 infection
Author(s) -
Dean J. Miller,
John V. Capodilupo,
Michele Lastella,
Charli Sargent,
Gregory D. Roach,
Victoria H. Lee,
Emily R Capodilupo
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0243693
Subject(s) - covid-19 , medicine , respiratory system , respiratory rate , young adult , disease , heart rate , infectious disease (medical specialty) , blood pressure
COVID-19, the disease caused by the SARS-CoV-2 virus, can cause shortness of breath, lung damage, and impaired respiratory function. Containing the virus has proven difficult, in large part due to its high transmissibility during the pre-symptomatic incubation. The study’s aim was to determine if changes in respiratory rate could serve as a leading indicator of SARS-CoV-2 infections. A total of 271 individuals (age = 37.3 ± 9.5, 190 male, 81 female) who experienced symptoms consistent with COVID-19 were included– 81 tested positive for SARS-CoV-2 and 190 tested negative; these 271 individuals collectively contributed 2672 samples (days) of data (1856 healthy days, 231 while infected with COVID-19 and 585 while negative for COVID-19 but experiencing symptoms). To train a novel algorithm, individuals were segmented as follows; (1) a training dataset of individuals who tested positive for COVID-19 (n = 57 people, 537 samples); (2) a validation dataset of individuals who tested positive for COVID-19 (n = 24 people, 320 samples); (3) a validation dataset of individuals who tested negative for COVID-19 (n = 190 people, 1815 samples). All data was extracted from the WHOOP system, which uses data from a wrist-worn strap to produce validated estimates of respiratory rate and other physiological measures. Using the training dataset, a model was developed to estimate the probability of SARS-CoV-2 infection based on changes in respiratory rate during night-time sleep. The model’s ability to identify COVID-positive individuals not used in training and robustness against COVID-negative individuals with similar symptoms were examined for a critical six-day period spanning the onset of symptoms. The model identified 20% of COVID-19 positive individuals in the validation dataset in the two days prior to symptom onset, and 80% of COVID-19 positive cases by the third day of symptoms.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here