z-logo
open-access-imgOpen Access
Energy transfer and influencing factors in soil during compaction
Author(s) -
Jie Li,
Bai X,
Fuli Ma
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0242622
Subject(s) - compaction , geotechnical engineering , soil compaction , loess , soil science , lateral earth pressure , environmental science , soil gradation , soil water , geology , geomorphology
In China, large-area excavation and filling engineering has increased rapidly with the expansion of construction land. The quality of filling engineering is the most important guarantee for the stability of building structures. Among all research on fill soil, the compaction characteristics are significant for indicating the strength and stability of filling engineering. In this paper, two layers of loess fill soil were compacted by a self-manufactured test system with three different compaction energies. Based on the variation in the soil bottom pressure obtained in the tests, the influence of the compaction parameters on the soil bottom pressure was investigated. The results show that the compaction curve can be used instead of the curve of the change in soil bottom pressure with water content; as the soil density increases, the soil bottom pressure increases to the maximum. The relation of the energy consumption ratio of the soil bottom ( σ/σz ) and the number of soil layers is exponential and reveals the stability of the soil skeleton formed during compaction. This paper describes the compaction characteristics of loess fill soil from the perspective of energy transfer, and the conclusions provide a theoretical basis for soil filling engineering.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here