z-logo
open-access-imgOpen Access
The peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone, ameliorates neurofunctional and neuroinflammatory abnormalities in a rat model of Gulf War Illness
Author(s) -
Kaspar Keledjian,
Orest Tsymbalyuk,
Stephen A. Semick,
Mitchell Moyer,
Serban Negoita,
Kevin Kim,
Svetlana Ivanova,
Volodymyr Gerzanich,
J. Marc Simard
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0242427
Subject(s) - neuroinflammation , rosiglitazone , medicine , endocrinology , hippocampus , elevated plus maze , translocator protein , anxiety , receptor , psychiatry , inflammation
Background Gulf War (GW) Illness (GWI) is a debilitating condition with a complex constellation of immune, endocrine and neurological symptoms, including cognitive impairment, anxiety and depression. We studied a novel model of GWI based on 3 known common GW exposures (GWE): (i) intranasal lipopolysaccharide, to which personnel were exposed during desert sand storms; (ii) pyridostigmine bromide, used as prophylaxis against chemical warfare; and (iii) chronic unpredictable stress, an inescapable element of war. We used this model to evaluate prophylactic treatment with the PPARγ agonist, rosiglitazone (ROSI). Methods Rats were subjected to the three GWE for 33 days. In series 1 and 2, male and female GWE-rats were compared to naïve rats. In series 3, male rats with GWE were randomly assigned to prophylactic treatment with ROSI (GWE-ROSI) or vehicle. After the 33-day exposures, three neurofunctional domains were evaluated: cognition (novel object recognition), anxiety-like behaviors (elevated plus maze, open field) and depression-like behaviors (coat state, sucrose preference, splash test, tail suspension and forced swim). Brains were analyzed for astrocytic and microglial activation and neuroinflammation (GFAP, Iba1, tumor necrosis factor and translocator protein). Neurofunctional data from rats with similar exposures were pooled into 3 groups: naïve, GWE and GWE-ROSI. Results Compared to naïve rats, GWE-rats showed significant abnormalities in the three neurofunctional domains, along with significant neuroinflammation in amygdala and hippocampus. There were no differences between males and females with GWE. GWE-ROSI rats showed significant attenuation of neuroinflammation and of some of the neurofunctional abnormalities. Conclusion This novel GWI model recapitulates critical neurofunctional abnormalities reported by Veterans with GWI. Concurrent prophylactic treatment with ROSI was beneficial in this model.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here