
Applications of a working framework for the measurement of representative learning design in Australian football
Author(s) -
Peter Browne,
Carl T. Woods,
Alice Sweeting,
Sam Robertson
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0242336
Subject(s) - football , representativeness heuristic , task (project management) , constraint (computer aided design) , computer science , competition (biology) , transfer of learning , machine learning , operations research , artificial intelligence , simulation , statistics , engineering , mathematics , ecology , systems engineering , mechanical engineering , political science , law , biology
Representative learning design proposes that a training task should represent informational constraints present within a competitive environment. To assess the level of representativeness of a training task, the frequency and interaction of constraints should be measured. This study compared constraint interactions and their frequencies in training (match simulations and small sided games) with competition environments in elite Australian football. The extent to which constraints influenced kick and handball effectiveness between competition matches, match simulations and small sided games was determined. The constraints of pressure and time in possession were assessed, alongside disposal effectiveness, through an association rule algorithm. These rules were then expanded to determine whether a disposal was influenced by the preceding disposal. Disposal type differed between training and competition environments, with match simulations yielding greater representativeness compared to small sided games. The subsequent disposal was generally more effective in small sided games compared to the match simulations and competition matches. These findings offer insight into the measurement of representative learning designs through the non-linear modelling of constraint interactions. The analytical techniques utilised may assist other practitioners with the design and monitoring of training tasks intended to facilitate skill transfer from preparation to competition.