
Collaborative prediction of web service quality based on user preferences and services
Author(s) -
Song Yang
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0242089
Subject(s) - computer science , collaborative filtering , personalization , web service , merge (version control) , quality of service , the internet , field (mathematics) , quality (philosophy) , world wide web , data mining , information retrieval , recommender system , mathematics , computer network , pure mathematics , philosophy , epistemology
The prediction of web service quality plays an important role in improving user services; it has been one of the most popular topics in the field of Internet services. In traditional collaborative filtering methods, differences in the personalization and preferences of different users have been ignored. In this paper, we propose a prediction method for web service quality based on different types of quality of service (QoS) attributes. Different extraction rules are applied to extract the user preference matrices from the original web data, and the negative value filtering-based top-K method is used to merge the optimization results into the collaborative prediction method. Thus, the individualized differences are fully exploited, and the problem of inconsistent QoS values is resolved. The experimental results demonstrate the validity of the proposed method. Compared with other methods, the proposed method performs better, and the results are closer to the real values.