z-logo
open-access-imgOpen Access
Emergency department routine data and the diagnosis of acute ischemic heart disease in patients with atypical chest pain
Author(s) -
Ki Hong Kim,
Jeong Ho Park,
Young Sun Ro,
Ki Jeong Hong,
Kyoung Jun Song,
Sang Do Shin
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0241920
Subject(s) - medicine , chest pain , logistic regression , emergency department , receiver operating characteristic , confidence interval , population , cohort , emergency medicine , cohort study , myocardial infarction , psychiatry , environmental health
Background Due to an aging population and the increasing proportion of patients with various comorbidities, the number of patients with acute ischemic heart disease (AIHD) who present to the emergency department (ED) with atypical chest pain is increasing. The aim of this study was to develop and validate a prediction model for AIHD in patients with atypical chest pain. Methods and results A chest pain workup registry, ED administrative database, and clinical data warehouse database were analyzed and integrated by using nonidentifiable key factors to create a comprehensive clinical dataset in a single academic ED from 2014 to 2018. Demographic findings, vital signs, and routine laboratory test results were assessed for their ability to predict AIHD. An extreme gradient boosting (XGB) model was developed and evaluated, and its performance was compared to that of a single-variable model and logistic regression model. The area under the receiver operating characteristic curve (AUROC) was calculated to assess discrimination. A calibration plot and partial dependence plots were also used in the analyses. Overall, 4,978 patients were analyzed. Of the 3,833 patients in the training cohort, 453 (11.8%) had AIHD; of the 1,145 patients in the validation cohort, 166 (14.5%) had AIHD. XGB, troponin (single-variable), and logistic regression models showed similar discrimination power (AUROC [95% confidence interval]: XGB model, 0.75 [0.71–0.79]; troponin model, 0.73 [0.69–0.77]; logistic regression model, 0.73 [0.70–0.79]). Most patients were classified as non-AIHD; calibration was good in patients with a low predicted probability of AIHD in all prediction models. Unlike in the logistic regression model, a nonlinear relationship-like threshold and U-shaped relationship between variables and the probability of AIHD were revealed in the XGB model. Conclusion We developed and validated an AIHD prediction model for patients with atypical chest pain by using an XGB model.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here