z-logo
open-access-imgOpen Access
Expression, purification and characterization of α-synuclein fibrillar specific scFv from inclusion bodies
Author(s) -
Vijay Gupta,
Indulekha P. Sudhakaran,
Zeyaul Islam,
Nishant N. Vaikath,
Issam Hmila,
Tamás Lukacsovich,
Prasanna R. Kolatkar,
Omar M. A. El-Agnaf
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0241773
Subject(s) - synucleinopathies , recombinant dna , inclusion bodies , chemistry , alpha synuclein , homology modeling , antibody , protein aggregation , fibril , docking (animal) , biochemistry , microbiology and biotechnology , biology , parkinson's disease , gene , genetics , enzyme , medicine , nursing , disease , pathology
Aggregation of α-synuclein (α-syn) has been implicated in multiple neurodegenerative disorders including Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), collectively grouped as synucleinopathies. Recently, recombinant antibody fragments (Fab, scFvs and diabodies) against α-syn have emerged as an alternative to the traditional full-length antibody in immunotherapeutic approaches owing to their advantages including smaller size and higher stability, specificity and affinity. However, most of the recombinant antibody fragments tend to be expressed as inclusion bodies (IBs) making its purification extremely challenging. In the current study, a single-chain variable fragment (scFv-F) antibody, targeting the pathogenic α-syn fibrils, was engineered and expressed in E. coli. Majority of the expressed scFv-F accumulated in insoluble aggregates as IBs. A variety of mild and harsh solubilizing conditions were tested to solubilize IBs containing scFv-F to obtain the active protein. To preserve secondary structure and bioactivity, a mild solubilizing protocol involving 100 mM Tris, pH 12.5 with 2 M urea was chosen to dissolve IBs. Slow on-column refolding method was employed to subsequently remove urea and obtain active scFv-F. A three-dimensional (3D) model was built using homology modeling and subjected to molecular docking with the known α-syn structure. Structural alignment was performed to delineate the potential binding pocket. The scFv-F thus purified demonstrated high specificity towards α-syn fibrils compared to monomers. Molecular modeling studies suggest that scFv-F shares the same structural topology with other known scFvs. We present evidence through structural docking and alignment that scFv-F binds to α-syn C-terminal region. In conclusion, mild solubilization followed by slow on-column refolding can be utilized as a generalized and efficient method for hard to purify disease relevant insoluble proteins and/or antibody molecules from IBs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here