
Specific induction and long-term maintenance of high purity ventricular cardiomyocytes from human induced pluripotent stem cells
Author(s) -
Hiroyuki Fukushima,
Yoshio Miki,
Masahide Kawatou,
Víctor López-Dávila,
Masafumi Takeda,
Yasunari Kanda,
Yuko Sekino,
Yoshinori Yoshida,
Jun Yamashita
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0241287
Subject(s) - induced pluripotent stem cell , microbiology and biotechnology , stem cell , regenerative medicine , population , biology , wnt signaling pathway , cellular differentiation , cell culture , cell , biochemistry , signal transduction , embryonic stem cell , medicine , genetics , gene , environmental health
Currently, cardiomyocyte (CM) differentiation methods require a purification step after CM induction to ensure the high purity of the cell population. Here we show an improved human CM differentiation protocol with which high-purity ventricular-type CMs can be obtained and maintained without any CM purification process. We induced and collected a mesodermal cell population (platelet-derived growth factor receptor-α (PDGFRα)-positive cells) that can respond to CM differentiation cues, and then stimulated CM differentiation by means of Wnt inhibition. This method reproducibly generated CMs with purities above 95% in several human pluripotent stem cell lines. Furthermore, these CM populations were maintained in culture at such high purity without any further CM purification step for over 200 days. The majority of these CMs (>95%) exhibited a ventricular-like phenotype with a tendency to structural and electrophysiological maturation, including T-tubule-like structure formation and the ability to respond to QT prolongation drugs. This is a simple and valuable method to stably generate CM populations suitable for cardiac toxicology testing, disease modeling and regenerative medicine.