z-logo
open-access-imgOpen Access
Flow signal change in polyps after anti-vascular endothelial growth factor therapy
Author(s) -
Christina L. ␣Chang,
Yiming Huang,
Ming-Kai Hsieh,
An-Fei Li,
ShihJen Chen
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0241230
Subject(s) - medicine , blood flow , ophthalmology , gastroenterology , cardiology
Optical coherence tomography angiography (OCTA) is a novel, non-invasive imaging tool used to detect vascular flow. The absence of a flow signal in OCTA in polyps revealed by indocyanine green angiography (ICGA) in patients with polypoidal choroidal vasculopathy (PCV) may indicate slow or compromised filling of blood flow from choroidal vessels. Naïve patients with PCV treated with intravitreal injections of aflibercept (IVI-A) were enrolled in this study to validate the hypothesis that baseline flow may affect the outcome of polyp regression in ICGA. The flow signal of polyps in OCTA was detected by manual segmentation in the corresponding location by ICGA. Polyps were defined as high-flow if both OCTA and ICGA showed positive findings, and low-flow if OCTA showed a negative flow signal in 3 consecutive horizontal scans at the polyp area shown in ICGA. A total of 24 polyps were identified in 13 PCV patients at baseline. Of these 24 polyps, 22 (91.7%) were high-flow and 2 (8.3%) were low-flow. After 3 monthly IVI-A, all low-flow polyps had complete regression in ICGA. Among 17 (77%) high-flow polyps at baseline that had regression after treatment, 10 (58.8%) became low-flow, while 5 (22.7%) persistent polyps remained high-flow. Flow signal of polyps as detected by OCTA could be a predictive factor for treatment response in patients with PCV. Monitoring changes in flow signal after treatment is clinically relevant.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here