
Numerical calculation and analysis of filtration performance of an effective novel structural fiber for PM2.5
Author(s) -
Hui Rong Yang,
Honghui Zhu,
Haiming Fu
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0240941
Subject(s) - dimensionless quantity , fiber , filtration (mathematics) , slit , mechanics , pressure drop , materials science , drop (telecommunication) , shape factor , physics , optics , composite material , geometry , mathematics , engineering , mechanical engineering , statistics
In this study, a novel fiber with slit-crescent-shaped cross-section is proposed to enhance the filtration performance of PM 2.5 in fibrous filtration. The collection efficiency of this fiber is simulated by using a Brownian dynamics simulation technique, and its filtration pressure drop is obtained by numerically solving Navier-Stokes equation with Fluent software. A parametric study is performed to improve the optimum filtration performance of the slit-crescent-shaped fiber via adjusting its structural parameters (dimensionless center-to-center spacing and slit width). Results indicate that at the optimal condition, i.e., when dimensionless slit width ranges from 0.2 to 0.4, collection efficiency is enhanced by 13.1%–101.1% relative to the circular fiber for particles ranging from 0.1μm to 2.5μm for the slit-crescent-shaped fiber under various dimensionless center-to-center spacing, and filtration pressure drop is reduced by up to 14.4%. In addition, quality factor is introduced to evaluate the comprehensive filtration performance of the slit-crescent-shaped fiber with different structural parameters, and results show that large dimensionless slit width and small dimensionless center-to-center spacing lead to a much higher quality factor than the circular fiber, especially for particles lager than 0.5μm. The numerical results obtained in this work are conducive to designing high efficiency fibrous filters.