z-logo
open-access-imgOpen Access
Unraveling candidate genomic regions responsible for delayed leaf senescence in rice
Author(s) -
Uma Maheshwar Singh,
Pallavi Sinha,
Sreenath Dixit,
Ragavendran Abbai,
Challa Venkateshwarlu,
Annapurna Chitikineni,
Vikas K. Singh,
Rajeev K. Varshney,
Arvind Kumar
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0240591
Subject(s) - biology , quantitative trait locus , panicle , senescence , tiller (botany) , population , chlorophyll , backcrossing , horticulture , genetics , botany , gene , demography , sociology
Photosynthates generated after heading contributes to 60% - 80% of grain yield in rice. Delay in leaf senescence can contribute to a long grain-filling period and thereby increased yield. The objective of this study was to identify genomic region(s) responsible for delayed leaf senescence (DLS) and validate the role of underlying candidate genes in controlling target traits. 302 BC 2 F 4 backcross-derived lines (BILs) developed from a cross between Swarna and Moroberekan were phenotyped for two seasons (DS2016 and WS2017) for chlorophyll content and yield parameters. KASPar-SNP assays based genotyping data with 193 SNPs of mapping population was used to identify the targeted genomic region(s). Significant positive correlation was observed between the two most important determinants of DLS traits viz ., RDCF (reduced decline degree of chlorophyll content of flag leaf) and RDCS (reduced decline degree of chlorophyll content of second leaf) with plant height (PH), grain number per panicle (GPN), panicle length (PL), number of tiller (NT) and grain yield (GY). A total of 41 and 29 QTLs with phenotypic variance (PVE) ranging from 8.2 to 25.1% were detected for six DLS traits during DS2016 and WS2017, respectively. Out of these identified QTLs, 19 were considered as stable QTLs detected across seasons. 17 of the identified stable QTLs were found to be novel. In-silico analysis revealed five key genes regulating chlorophyll metabolism. Expression analysis of these genes confirmed their strong association with the senescence pattern in leaf tissue of parents as well as selected phenotypically extreme lines. The identified stable QTLs regulating DLS traits and validation of potential candidate genes provides insight into genetic basis of delayed senescence and is expected to contribute in enhancing grain yield through genomics-assisted breeding (GAB).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here