z-logo
open-access-imgOpen Access
Towards an understanding of the chemo-mechanical influences on kidney stone failure via the material point method
Author(s) -
Samuel Raymond,
Janille Maragh,
Admir Mašić,
John R. Williams
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0240133
Subject(s) - kidney stones , computer science , extracorporeal shock wave lithotripsy , field (mathematics) , point (geometry) , ultrasonic sensor , lithotripsy , geology , medicine , surgery , mathematics , radiology , pure mathematics , geometry
This paper explores the use of the meshfree computational mechanics method, the Material Point Method (MPM), to model the composition and damage of typical renal calculi, or kidney stones. Kidney stones are difficult entities to model due to their complex structure and failure behavior. Better understanding of how these stones behave when they are broken apart is a vital piece of knowledge to medical professionals whose aim is to remove these stone by breaking them within a patient’s body. While the properties of individual stones are varied, the common elements and proportions are used to generate synthetic stones that are then placed in a digital experiment to observe their failure patterns. First a more traditional engineering model of a Brazil test is used to create a tensile fracture within the center of these stones to observe the effect of stone consistency on failure behavior. Next a novel application of MPM is applied which relies on an ultrasonic wave being carried by surrounding fluid to model the ultrasonic treatment of stones commonly used by medical practitioners. This numerical modeling of Extracorporeal Shock Wave Lithotripsy (ESWL) reveals how these different stones failure in a more real-world situation and could be used to guide further research in this field for safer and more effective treatments.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here