z-logo
open-access-imgOpen Access
Isolation and transcriptional characterization of mouse perivascular astrocytes
Author(s) -
Nejla Yosef,
Yuanxin Xi,
Joseph H. McCarty
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0240035
Subject(s) - biology , microbiology and biotechnology , astrocyte , gene , signal transduction , extracellular matrix , blood–brain barrier , gene expression profiling , gene expression , genetics , central nervous system , neuroscience
In the post-natal mammalian brain perivascular astrocytes (PAs) ensheath blood vessels to regulate their unique permeability properties known as the blood-brain barrier (BBB). Very little is known about PA-expressed genes and signaling pathways that mediate contact and communication with endothelial cells (ECs) to regulate BBB physiology. This is due, in part, to lack of suitable models to distinguish PAs from other astrocyte sub-populations in the brain. To decipher the unique biology of PAs, we used in vivo gene knock-in technology to fluorescently label these cells in the adult mouse brain followed by fractionation and quantitative single cell RNA sequencing. In addition, PAs and non-PAs were also distinguished with transgenic fluorescent reporters followed by gene expression comparisons using bulk RNA sequencing. These efforts have identified several genes and pathways in PAs with potential roles in contact and communication with brain ECs. These genes encode various extracellular matrix (ECM) proteins and adhesion receptors, secreted growth factors, and intracellular signaling enzymes. Collectively, our experimental data reveal a set of genes that are expressed in PAs with putative roles in BBB physiology.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here