
Effects of parcellation and threshold on brainconnectivity measures
Author(s) -
T. C. Lacy,
P. A. Robinson
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0239717
Subject(s) - thresholding , artificial intelligence , small world network , granularity , computer science , pattern recognition (psychology) , statistical physics , complex network , physics , image (mathematics) , world wide web , operating system
It is shown that the statistical properties of connections between regions of the brain and their dependence on coarse-graining and thresholding in published data can be reproduced by a simple distance-based physical connectivity model. This allows studies with differing parcellation and thresholding to be interrelated objectively, and for the results of future studies on more finely grained or differently thresholded networks to be predicted. As examples of the implications, it is shown that the dependences of network measures on thresholding and parcellation imply that chosen brain regions can appear to form a small world network, even though the network at finer scales, or ultimately of individual neurons, may not be small world networks themselves.