z-logo
open-access-imgOpen Access
Silencing miR-202-3p increases MMP-1 and promotes a brain invasive phenotype in metastatic breast cancer cells
Author(s) -
Rania Harati,
Shirin Hafezi,
Aloı̈se Mabondzo,
Abdelaziz Tlili
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0239292
Subject(s) - gene silencing , cancer research , downregulation and upregulation , metastasis , breast cancer , metastatic breast cancer , brain metastasis , endothelium , blood–brain barrier , cancer , biology , cancer cell , matrix metalloproteinase , medicine , pathology , central nervous system , gene , biochemistry
Background Brain metastasis (BM) is a major cause of morbidity and mortality in breast cancer (BC) and its molecular mechanism remains poorly understood. Transmigration of metastatic cells through the brain endothelium is an essential step in BM. Metalloproteinase-1 (MMP-1) overexpression plays a key role in promoting trans-endothelial migration by degrading the inter-endothelial junctions and disrupting the endothelial integrity. However, little is known about the molecular mechanisms that induce MMP-1 in metastatic cells granting them a brain invasive phenotype. MiR-202-3p is downregulated in brain metastases compared to primary breast tumors and directly targets MMP-1. Here, we unraveled a critical role of miR-202-3p loss in MMP-1 upregulation promoting transmigration of metastatic cells through the brain endothelium. Methods A variant of the MDA-MB-231 human BC cell line (MDA-MB-231-BrM2) selected for its propensity to form brain metastases was found to express high levels of MMP-1 and low levels of miR-202-3p compared to the parental cells. Using a gain-and-loss of function approach, we modulated levels of miR-202-3p and examined the resultant effect on MMP-1 expression. Effect of miR-202-3p modulation on integrity of the brain endothelium and the transmigrative ability of BC cells were also examined. Results Loss of miR-202-3p in breast cancer cells enhanced their transmigration through the brain endothelium by upregulating MMP-1 and disrupting the inter-endothelial junctions (claudin-5, ZO-1 and ß-catenin). Restoring miR-202-3p exerted a metastasis-suppressive effect and preserved the endothelial barrier integrity. Conclusions Our study identified a critical regulatory role of miR-202-3p in brain metastasis and shed light on miR-202-3p/MMP-1 axis as a novel prognostic and therapeutic target that can be exploited to predict and prevent brain metastasis in breast cancer patients.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here