
Novel genes associated with folic acid-mediated metabolism in mouse: A bioinformatics study
Author(s) -
Jianwen Zhao,
WenBin Zou,
Tingxi Hu
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0238940
Subject(s) - folic acid , bioinformatics , gene , biology , computational biology , genetics , medicine
Folic acid plays an essential role in the central nervous system and cancer. This study aimed to screen genes related to folic acid metabolism. Datasets (GSE80587, GSE65267 and GSE116299) correlated to folic acid were screened in the Gene Expression Omnibus. Weighed gene co-expression network analysis was performed to identify modules associated with sample traits of folic acid and organs (brain, prostate and kidney). Functional enrichment analysis was performed for the eigengenes in modules that were significantly correlated with sample traits. Accordingly, the hub genes and key nodes in the modules were identified using the protein interaction network. A total of 17,252 genes in three datasets were identified. One module, which included 97 genes that were highly correlated with sample traits (including folic acid treatment [cor = -0.57, P = 3e-04] and kidney [cor = -0.68, p = 4e-06]), was screened out. Hub genes, including tetratricopeptide repeat protein 38 (Ttc38) and miR-185, as well as those (including Sema3A, Insl3, Dll1, Msh4 and Snai1) associated with “neuropilin binding”, “regulation of reproductive process” and “vitamin D metabolic process”, were identified. Genes, including Ttc38, Sema3A, Insl3, Dll1, Msh4 and Snai1, were the novel factors that may be associated with the development of the kidneys and related to folic acid treatment.