
A new metric for understanding hidden political influences from voting records
Author(s) -
Corrado Possieri,
Chiara Ravazzi,
Fabrizio Dabbene,
Giuseppe Calafiore
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0238481
Subject(s) - interpretability , voting , closeness , computer science , metric (unit) , politics , voting behavior , data science , measure (data warehouse) , ideology , data mining , artificial intelligence , political science , mathematics , mathematical analysis , operations management , law , economics
Inspired by the increasing attention of the scientific community towards the understanding of human relationships and actions in social sciences, in this paper we address the problem of inferring from voting data the hidden influence on individuals from competing ideology groups. As a case study, we present an analysis of the closeness of members of the Italian Senate to political parties during the XVII Legislature. The proposed approach is aimed at automatic extraction of the relevant information by disentangling the actual influences from noise, via a two step procedure. First, a sparse principal component projection is performed on the standardized voting data. Then, the projected data is combined with a generative mixture model, and an information theoretic measure, which we refer to as Political Data-aNalytic Affinity (Political DNA), is finally derived. We show that the definition of this new affinity measure, together with suitable visualization tools for displaying the results of analysis, allows a better understanding and interpretability of the relationships among political groups.