
Diversification of polyphosphate end-labeling via bridging molecules
Author(s) -
Catherine J. Baker,
Stephanie A. Smith,
James H. Morrissey
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0237849
Subject(s) - polyphosphate , covalent bond , moiety , amine gas treating , chemistry , carbodiimide , combinatorial chemistry , conjugated system , bifunctional , organic chemistry , phosphate , polymer , catalysis
Investigation of the biological roles of inorganic polyphosphate has been facilitated by our previous development of a carbodiimide-based method for covalently coupling primary amine-containing molecules to the terminal phosphates of polyphosphate. We now extend that approach by optimizing the reaction conditions and using readily available “bridging molecules” containing a primary amine and an additional reactive moiety, including another primary amine, a thiol or a click chemistry reagent such as dibenzocyclooctyne. This two-step labeling method is used to covalently attach commercially available derivatives of biotin, peptide epitope tags, and fluorescent dyes to the terminal phosphates of polyphosphate. Additionally, we report three facile methods for purifying conjugated polyphosphate from excess reactants.