z-logo
open-access-imgOpen Access
Effects of HMW-GSs on quality related traits in wheat (Triticum aestivum L.) under different water regimes
Author(s) -
Jiajia Zhao,
Xingwei Zheng,
Qiao Liao,
Chao Ge,
Bangbang Wu,
Shuwei Zhang,
Liang Qiao,
Zhiwei Feng,
Jun Zheng
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0237711
Subject(s) - glutenin , locus (genetics) , protein subunit , allele , biology , food science , doubled haploidy , genetics , quantitative trait locus , gene
Alleles at the Glu-1 loci play important roles in the functional properties of wheat flour. The effects of various high-molecular-weight glutenin subunit (HMW-GS) compositions on quality traits and bread-making properties were evaluated using 235 doubled haploid lines (DHs). The experiment was conducted in a split plot design with two water regimes as the main plot treatment, and DH lines as the subplot treatments. Results showed that the presence of subunit pair 5+10 at the Glu-D1 locus, either alone or in combination with others, appears to provide an improvement in quality and bread-making properties. At the Glu-A1 locus, subunit 1 produced a higher Zeleny sedimentation value (Zel) and stretch area (SA) than subunit 2* when subunits 14+15 and 5+10 were expressed at the Glu-B1 and Glu-D1 loci, and 2* had a positive effect on the maximum dough resistance (Rmax) when subunits 14+15 and 5'+12 were expressed at the Glu-B1 and Glu-D1 loci, respectively. Given subunit 1 at the Glu-A1 locus and 5'+12 at the Glu-D1 locus, the effects of Glu-B1 subunits 14+15 on the tractility (Tra), dough stability time (ST), and dough development time (DT) under the well-watered regime were significantly higher than those of Glu-B1 subunits 13+16. However, 13+16 had a positive effect on SA under the rain-fed regime when subunits 2* and 5+10 were expressed at the Glu-A1 and Glu-D1 loci, respectively. Multiple comparisons analysis revealed that the Zel and Rmax of the six subunits and eight HMW-GS compositions were stable under different water regimes. Overall, subunit compositions 1, 13+16 and 5+10 and 1, 14+15 and 5+10 had higher values for quality traits and bread-baking properties under the two water regimes. These results could play a positive guiding role in selecting and popularizing varieties suitable for production and cultivation in local areas.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here