z-logo
open-access-imgOpen Access
Interactions between functionalised silica nanoparticles and Pseudomonas fluorescens biofilm matrix: A focus on the protein corona
Author(s) -
Caio Barros,
Stephanie Fulaz,
Stefania Vitale,
Eoin Casey,
Laura Quinn
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0236441
Subject(s) - biofilm , nanoparticle , pseudomonas fluorescens , isoelectric point , surface charge , chemistry , nanotechnology , biophysics , materials science , bacteria , biochemistry , biology , genetics , enzyme
Biofilms are microbial communities embedded in an extracellular polymeric matrix and display an enhanced tolerance to the action of antimicrobials. The emergence of novel functionalised nanoparticles is considered a promising avenue for the development of biofilm-specific antimicrobial technologies. However, there is a gap in the understanding of interactions between nanoparticles and the biofilm matrix. Particularly, questions are raised on how nanoparticle charge and surface groups play a role in aggregation when in contact with biofilm components. Herein we present the synthesis of four types of silica nanoparticles and undertake an analysis of their interactions with Pseudomonas fluorescens biofilm matrix. The effect of the biofilm matrix components on the charge and aggregation of the nanoparticles was assessed. Additionally, the study focused on the role of matrix proteins, with the in-depth characterisation of the protein corona of each nanoparticle by Liquid Chromatography with Tandem Mass Spectrometry experiments. The protein corona composition is dependent on the nanoparticle type; non-functionalised nanoparticles show less protein selectivity, whereas carboxylate-functionalised nanoparticles prefer proteins with a higher isoelectric point. These outcomes provide insights into the field of biofilm-nanoparticle interactions that can be valuable for the design of new nano-based targeting systems in future anti-biofilm applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here