
Fluid overload is a determinant for cardiac structural and functional impairments in type 2 diabetes mellitus and chronic kidney disease stage 5 not undergoing dialysis
Author(s) -
Byoung-Geun Han,
Joon Young Lee,
Mi Ryung Kim,
Hanwul Shin,
JaeSeok Kim,
Jae-Won Yang,
Jong Yeon Kim
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0235640
Subject(s) - medicine , cardiology , heart failure , volume overload , left ventricular hypertrophy , kidney disease , diabetes mellitus , dialysis , endocrinology , blood pressure
Background Fluid overload is common in patients with diabetes and chronic kidney disease (DM and CKD; DMCKD) and can lead to structural and functional cardiac abnormalities including left ventricular hypertrophy (LVH) and left ventricular diastolic dysfunction (LVDD). Fluid overload represents a crucial step in the pathophysiological pathways to chronic heart failure in patients with end-stage renal disease. We evaluated the impact of fluid overload on cardiac alterations in patients with diabetes and non-dialysis-dependent CKD stage 5 (DMCKD5-ND) without intrinsic heart disease. Methods Bioimpedance spectroscopy, echocardiography, and N-terminal prohormone of B-type natriuretic peptide (NT-proBNP) measurement were performed in 135 consecutive patients on the same day. Patients were divided into groups by tertiles of overhydration/extracellular water (OH/ECW) per bioimpedance spectroscopy. Results Fluid balance markers including OH/ECW and NT-proBNP were significantly higher in the LVDD+LVH group. OH/ECW and its exacerbation were positively associated with the ratio between early mitral inflow and annular early diastolic velocities (E/e′ ratio) and left ventricular mass index (LVMI). The prevalence of LVH progressively increased across increasing tertiles of OH/ECW. In multiple regression analyses, OH/ECW as a continuous and categorical variable was independently associated with the E/e′ ratio and LVMI after adjustment for multiple confounding factors. Conclusions Fluid overload was independently associated with LVDD and LVH in patients with DMCKD5-ND. Our study suggests that structural and functional cardiac abnormalities and volume status should be evaluated simultaneously in patients with early-stage DMCKD rather than only DMCKD5-ND, in addition to intensive blood pressure and glycemic control, regardless of evident cardiovascular disease.