
Optimized residue analysis method for broflanilide and its metabolites in agricultural produce using the QuEChERS method and LC-MS/MS
Author(s) -
Hyun Ho Noh,
Chang Jo Kim,
Hye-Young Kwon,
Danbi Kim,
Byeong-Chul Moon,
Sujin Baek,
Minseok Oh,
Kee Sung Kyung
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0235526
Subject(s) - quechers , residue (chemistry) , chromatography , chemistry , liquid chromatography–mass spectrometry , mass spectrometry , pesticide residue , biology , biochemistry , pesticide , agronomy
Since broflanilide is a newly developed pesticide, analytical methods are required to determine the corresponding pesticide residues in diverse crops and foods. In this study, a pesticide residue analysis method was optimized for the detection and quantification of broflanilide and its two metabolites, DM-8007 and S(PFH-OH)-8007, in brown rice, soybean, apple, green pepper, mandarin, and kimchi cabbage. Residue samples were extracted from the produce using QuEChERS acetate and citrate buffering methods and were purified by dispersive solid-phase extraction (d-SPE) using six different adsorbent compositions with varying amounts of primary secondary amine (PSA), C 18 , and graphitized carbon black. All the sample preparation methods gave low-to-medium matrix effects, as confirmed by liquid chromatography–tandem mass spectrometry using standard solutions and matrix-matched standards. In particular, the use of the citrate buffering method, in combination with purification by d-SPE using 25 mg of PSA and a mixture of other adsorbents, consistently gave low matrix effects that in the range from −18.3 to 18.8%. Pesticide recoveries within the valid recovery range 70–120% were obtained both with and without d-SPE purification using 25 mg of PSA and other adsorbents. Thus, the developed residue analysis method is viable for the determination of broflanilide and its metabolites in various crops.