Open Access
Raman Spectroscopy characterization extracellular vesicles from bovine placenta and peripheral blood mononuclear cells
Author(s) -
Han Zhang,
Ana Caroline Silva,
Wei Zhang,
Heloísa M. Rutigliano,
Anhong Zhou
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0235214
Subject(s) - trophoblast , placenta , peripheral blood mononuclear cell , extracellular vesicles , raman spectroscopy , andrology , chemistry , biology , immunology , microbiology and biotechnology , biochemistry , fetus , medicine , pregnancy , in vitro , genetics , physics , optics
Placenta-derived extracellular vesicles (EVs) are involved in communication between the placenta and maternal immune cells possibly leading to a modulation of maternal T-cell signaling components. The ability to identify EVs in maternal blood may lead to the development of diagnostic and treatment tools for pregnancy complications. The objective of this work was to differentiate EVs from bovine placenta (trophoblast) and peripheral blood mononuclear cells (PBMC) by a label-free, non-invasive Raman spectroscopy technique. Extracellular vesicles were isolated by ultracentrifugation. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) were applied to verify the presence and the size distribution of EVs. Raman peaks at 728 cm -1 (collagen) and 1573 cm -1 (protein) were observed only in PBMC-derived EVs, while the peaks 702 cm -1 (cholesterol) and 1553 cm -1 (amide) appeared only in trophoblast-derived EVs. The discrimination of the Raman spectral fingerprints for both types of EVs from different animals was performed by principal component analysis (PCA) and linear discriminant analysis (LDA). The PCA and LDA results clearly segregated the spectral clusters between the two types of EVs. Moreover, the PBMC-derived EVs from different animals were indistinguishable, while the trophoblast-derived EVs from three placental samples of different gestational ages showed separate clusters. This study reports for the first time the Raman characteristic peaks for identification of PBMC and trophoblast-derived EVs. The development of this method also provides a potential tool for further studies investigating the causes and potential treatments for pregnancy complications.