
PCNA antagonizes cohesin-dependent roles in genomic stability
Author(s) -
Caitlin M. Zuilkoski,
Robert V. Skibbens
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0235103
Subject(s) - cohesin , establishment of sister chromatid cohesion , proliferating cell nuclear antigen , chromatin , biology , sister chromatids , microbiology and biotechnology , dna repair , histone , genome instability , dna damage , genetics , dna , chromosome , gene
PCNA sliding clamp binds factors through which histone deposition, chromatin remodeling, and DNA repair are coupled to DNA replication. PCNA also directly binds Eco1/Ctf7 acetyltransferase, which in turn activates cohesins and establishes cohesion between nascent sister chromatids. While increased recruitment thus explains the mechanism through which elevated levels of chromatin-bound PCNA rescue eco1 mutant cell growth, the mechanism through which PCNA instead worsens cohesin mutant cell growth remains unknown. Possibilities include that elevated levels of long-lived chromatin-bound PCNA reduce either cohesin deposition onto DNA or cohesin acetylation. Instead, our results reveal that PCNA increases the levels of both chromatin-bound cohesin and cohesin acetylation. Beyond sister chromatid cohesion, PCNA also plays a critical role in genomic stability such that high levels of chromatin-bound PCNA elevate genotoxic sensitivities and recombination rates. At a relatively modest increase of chromatin-bound PCNA, however, fork stability and progression appear normal in wildtype cells. Our results reveal that even a moderate increase of PCNA indeed sensitizes cohesin mutant cells to DNA damaging agents and in a process that involves the DNA damage response kinase Mec1(ATR), but not Tel1(ATM). These and other findings suggest that PCNA mis-regulation results in genome instabilities that normally are resolved by cohesin. Elevating levels of chromatin-bound PCNA may thus help target cohesinopathic cells linked that are linked to cancer.