z-logo
open-access-imgOpen Access
A deep learning approach to predict visual field using optical coherence tomography
Author(s) -
Keunheung Park,
Jinmi Kim,
Jiwoong Lee
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0234902
Subject(s) - optical coherence tomography , mean squared error , visual field , glaucoma , nerve fiber layer , artificial intelligence , ophthalmology , convolutional neural network , medicine , mathematics , computer science , statistics
We developed a deep learning architecture based on Inception V3 to predict visual field using optical coherence tomography (OCT) imaging and evaluated its performance. Two OCT images, macular ganglion cell-inner plexiform layer (mGCIPL) and peripapillary retinal nerve fibre layer (pRNFL) thicknesses, were acquired and combined. A convolutional neural network architecture was constructed to predict visual field using this combined OCT image. The root mean square error (RMSE) between the actual and predicted visual fields was calculated to evaluate the performance. Globally (the entire visual field area), the RMSE for all patients was 4.79 ± 2.56 dB, with 3.27 dB and 5.27 dB for the normal and glaucoma groups, respectively. The RMSE of the macular region (4.40 dB) was higher than that of the peripheral region (4.29 dB) for all subjects. In normal subjects, the RMSE of the macular region (2.45 dB) was significantly lower than that of the peripheral region (3.11 dB), whereas in glaucoma subjects, the RMSE was higher (5.62 dB versus 5.03 dB, respectively). The deep learning method effectively predicted the visual field 24–2 using the combined OCT image. This method may help clinicians determine visual fields, particularly for patients who are unable to undergo a physical visual field exam.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here