z-logo
open-access-imgOpen Access
Lipidomic and metabolomic profiles of Coffea canephora L. beans cultivated in Southwestern Nigeria
Author(s) -
Chinyere F. Anagbogu,
Jiaqi Zhou,
Festus Olakunle Olasupo,
Mohammed Baba Nitsa,
Diane M. Beckles
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0234758
Subject(s) - coffea canephora , biology , genotype , metabolomics , food science , botany , microbiology and biotechnology , biochemistry , gene , bioinformatics , coffea arabica
Coffee ( Coffea spp.) is one of the most popular refreshing beverages globally. Coffee lipid diversity has untapped potential for improving coffee marketability because lipids contribute significantly to both the health benefits and cup quality of coffee. However, in spite of its potential importance, there have not been extensive studies of lipids among C . canephora genotypes. In this study, ultra-performance liquid chromatography coupled with mass spectrometry (UPLC–MS) profiling of lipid molecules was performed for 30 genotypes consisting of 15 cultivated and 15 conserved genotypes of C . canephora in Southwestern Nigeria. We identified nine classes of lipids in the 30 genotypes which belong to the ‘Niaouli’, ‘Kouillou’ and ‘Java Robusta’ group: among these, the most abundant lipid class was the triacylglycerols, followed by the fatty acyls group. Although ‘Niaouli’ diverged from the ‘Kouillou’ and ‘Java Robusta’ genotypes when their lipid profiles were compared, there was greater similarity in their lipid composition by multivariate analysis, compared to that observed when their primary metabolites and especially their secondary metabolite profiles were examined. However, distinctions could be made among genotypes. Members of the fatty acyls group had the greatest power to discriminate among genotypes, however, lipids that were low in abundance e.g. a cholesterol ester (20:3), and phosphotidylethanolamine (34:0) were also helpful to understand the relationships among C . canephora genotypes. The divergent lipid profiles identified among the C . canephora genotypes, correlated with their Single Nucleotide Polymorphism grouping as assessed by genotype-by-sequencing, and will be exploited to improve coffee cup quality.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here