z-logo
open-access-imgOpen Access
Ten minutes of transcranial static magnetic field stimulation does not reliably modulate motor cortex excitability
Author(s) -
Sabrina Lorenz,
Brity Alex,
Thomas Kammer
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0233614
Subject(s) - transcranial magnetic stimulation , habituation , motor cortex , oddball paradigm , audiology , neuroscience , auditory cortex , evoked potential , psychology , stimulation , medicine , physical medicine and rehabilitation , electroencephalography , event related potential
Recently, modulatory effects of static magnetic field stimulation (tSMS) on excitability of the motor cortex have been reported. In our previous study we failed to replicate these results. It was suggested that the lack of modulatory effects was due to the use of an auditory oddball task in our study. Thus, we aimed to evaluate the role of an oddball task on the effects of tSMS on motor cortex excitability. In a within-subject-design we compared 10 minutes tSMS with and without oddball task. In one of the two sessions subjects had to solve an auditory oddball task during the exposure to the magnet, whereas there was no task during exposure in the other session. Motor cortex excitability was measured before and after tSMS. No modulation was observed in any condition. However, when data were pooled regarding the order of the sessions, a trend for an increase of excitability was observed in the first session compared to the second session. We now can rule out that the auditory oddball task destroys tSMS effects, as postulated. Our results rather suggest that fluctuations in the amplitudes of single pulse motor evoked potentials may possibly mask weak modulatory effects but may also lead to false positive results if the number of subjects in a study is too low. In addition, there might be a habituation effect to the whole procedure, resulting in less variability when subjects underwent the same experiment twice.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here