
Deep neural model with self-training for scientific keyphrase extraction
Author(s) -
Xun Zhu,
Chen Lyu,
Donghong Ji,
Han Liao,
Fēi Li
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0232547
Subject(s) - conditional random field , computer science , leverage (statistics) , artificial intelligence , artificial neural network , sentence , task (project management) , machine learning , deep learning , natural language processing , automatic summarization , recurrent neural network , deep neural networks , management , economics
Scientific information extraction is a crucial step for understanding scientific publications. In this paper, we focus on scientific keyphrase extraction, which aims to identify keyphrases from scientific articles and classify them into predefined categories. We present a neural network based approach for this task, which employs the bidirectional long short-memory (LSTM) to represent the sentences in the article. On top of the bidirectional LSTM layer in our neural model, conditional random field (CRF) is used to predict the label sequence for the whole sentence. Considering the expensive annotated data for supervised learning methods, we introduce self-training method into our neural model to leverage the unlabeled articles. Experimental results on the ScienceIE corpus and ACL keyphrase corpus show that our neural model achieves promising performance without any hand-designed features and external knowledge resources. Furthermore, it efficiently incorporates the unlabeled data and achieve competitive performance compared with previous state-of-the-art systems.