
Flow analysis on microcasting with degassed polydimethylsiloxane micro-channels for cell patterning with cross-linked albumin
Author(s) -
Yingjia Shen,
Nobuyuki Tanaka,
Hironori Yamazoe,
Shunsuke Furutani,
Hidenori Nagai,
Takayuki Kawai,
Yo Tanaka
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0232518
Subject(s) - polydimethylsiloxane , agarose , materials science , microstructure , viscosity , casting , volumetric flow rate , albumin , microchannel , aqueous solution , chromatography , mold , chemical engineering , microfluidics , composite material , chemistry , nanotechnology , biochemistry , organic chemistry , physics , quantum mechanics , engineering
Patterned cell culturing is one of the most useful techniques for understanding the interaction between geometric conditions surrounding cells and their behaviors. The authors previously proposed a simple method for cell patterning with an agarose gel microstructure fabricated by microcasting with a degassed polydimethylsiloxane (PDMS) mold. Although the vacuum pressure produced from the degassed PDMS can drive a highly viscous agarose solution, the influence of solution viscosity on the casting process is unknown. This study investigated the influences of micro-channel dimensions or solution viscosity on the flow of the solution in a micro-channel of a PDMS mold by both experiments and numerical simulation. It was found experimentally that the degassed PDMS mold was able to drive a solution with a viscosity under 575 mPa·s. A simulation model was developed which can well estimate the flow rate in various dimensions of micro-channels. Cross-linked albumin has low viscosity (1 mPa·s) in aqueous solution and can undergo a one-way dehydration process from solution to solid that produces cellular repellency after dehydration. A microstructure of cross-linked albumin was fabricated on a cell culture dish by the microcasting method. After cells were seeded and cultivated on the cell culture dish with the microstructure for 7 days, the cellular pattern of mouse skeletal myoblast cell line C2C12 was observed. The microcasting with cross-linked albumin solution enables preparation of patterned cell culture systems more quickly in comparison with the previous agarose gel casting, which requires a gelation process before the dehydration process.